博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
离散和连续概率
阅读量:6648 次
发布时间:2019-06-25

本文共 1040 字,大约阅读时间需要 3 分钟。

连续变量单点概率

在本课的下一部分,Sebastian Thrun 将向你介绍连续变量,连续概率分布及其背后的含义。

如之前所述,连续变量可以采用任何实数,例如整数或小数。 即使是像圆周角度这样的变量也是连续的。

 
幸运轮盘

绕着轮盘旋转的箭头

 

该角度可以取任何十进制值,如 60.7423 度。 即使合理值的范围可能被限制在 0 到 360 度之间,角度也可以在该范围之间取任意小数。 你可以查看本课的下一部分,以了解更多详情。

下图显示的是子弹从抢射出后落在x的概率?

答案为0

可知连续事件的值在单点处的概率为0

 

连续变量区间概率

旋转酒瓶,瓶嘴在0到180度区间的概率为0.5.

 

连续概率分布

在本课的下一部分中,Sebastian 将介绍如何以连续的概率分布进行可视化和计算。 在你继续学习之前,让我们再次回顾并比较一下离散和连续分布。

在本课一开始,我们向你展示了一个连续概率分布旁边的离散概率分布。 如下图所示:

 
离散与连续概率分布

离散与连续概率分布

 

离散分布可以被分解成“片”。 每“片”代表一个结果,比如在硬币抛掷 3 次的例子中,有出现 0 次正面、 1 次正面、 2 次正面 和 3 次正面的不同情况 。

连续分布在整个 x 轴范围内都有一条连续不断的线。 比如,对于速度来说,你可以有 20 或 20.5 或 -10.451 的速度。

注意连续分布上的 y 轴标签:“概率密度函数”。 对于离散概率分布来说,y 轴表示事件发生的概率。 在连续情况下,概率密度函数并不直接表示概率; 相反,密度函数曲线下方的区域代表概率。

你将在本课的下一部分中了解更多信息。

不过,即使不知道“概率密度函数”意味着什么,你也可以从图表中了解到,速度大概在 20 左右,而速度大概在 0 或40 左右的可能性更小。

 

连续分布的特征

以下是连续分布和概率密度函数的一些特征。 在阅读本课的下一部分时,请牢记这些内容:

  • y 值必须大于或等于 0。
  • 发生于特定 x 值的概率可以等于 0。
  • 两个 x 值之间发生事件的概率等于这两个 x 值之间的曲线下面积。
  • 概率密度函数曲线下的总面积等于 1。

实际上,这些规则意味着速度等于 20 的概率为零。 对于连续分布,只能计算 19.99 和 20.01之间一系列值中的概率。

因为曲线下的总面积是 1,所以 “速度在负无穷和正无穷之间” 是有 100% 的可能性。

转载于:https://www.cnblogs.com/fuhang/p/8759296.html

你可能感兴趣的文章